朱世杰是哪个朝代的,四元玉鉴是哪个朝代的
今天给各位分享朱世杰是哪个朝代的的知识,其中也会对朱世杰是哪个朝代的进行解释,如果能碰巧解决你现在面临的问题,别忘了关注皮肤病网,现在开始吧!
朱世杰是什么朝代,什么地方的人,代表著作和数学创造
朱世杰是元代燕山(今北京)人,代表著作《算学启蒙》与《四元玉鉴》,数学成就为四元消法。 一、朱世杰 朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。有“中世纪世界最伟大的数学家”之誉。 二、代表著作 1、《算学启蒙》 本书的正文分3卷,20门,259问。卷上8门,113问,包括各种乘除捷算法和歌诀的应用题,以及各种比例算法。许多问题反映了元代的社会经济情况。 卷中7门,71问,是面积、体积及各种算术问题。卷下5门,75问,是关于分数运算、垛积(即高阶等差级数求和)、盈不足术、线性方程组解法、天元术及增乘开方法等问题。还处理了开方过程中系数变号的问题。 2、《四元玉鉴》 《四元玉鉴》分卷首、上卷、中卷、下卷,24门,收录288问,包括天元术232问,二元术36问,三元术13问,四元术7问。卷首四问是例题,有草(解题步骤),其他284问只有术而没有草。 1837年,清代数学家罗士琳补草,刊行《四元玉鉴细草》三卷。所有问题都与方程式或方程组有关。 介绍了朱世杰在多元高次方程组的解法─”四元术”、高阶等差级数的计算─”垛积术”以及”招差术”(有限差分)等方面的研究成果。 三、数学创造 朱世杰的主要贡献是创造了一套完整的消未知数方法,称为四元消法.这种方法在世界上长期处于领先地位,直到18世纪,法国数学家贝祖(Bezout)提出一般的高次方程组解法,才超过朱世杰。 除了四元术以外,《四元玉鉴》中还有两项重要成就,即创立了一般的高阶等差级数求和公式及等间距四次内插法公式,后者通常称为招差术。 扩展资料 朱世杰在数学科学上,全面地继承了秦九韶、李冶、杨辉的数学成就,并给予创造性的发展,写出了《算学启蒙》、《四元玉鉴》等著名作品,把我国古代数学推向更高的境界,形成宋元时期中国数学的最高峰。 《算学启蒙》是朱世杰在元成宗大德三年(1299)刊印的,它的体系完整,内容深入浅出,通俗易懂,是一部很著名的启蒙读物。这部著作后来流传到朝鲜、日本等国,出版过翻刻本和注释本,产生过一定的影响。 而《四元玉鉴》更是一部成就辉煌的数学名著。它受到近代数学史研究者的高度评价,认为是中国古代数学科学著作中最重要的、最有贡献的一部数学名著。 《四元玉鉴》成书于大德七年(1303),共三卷,24门,288问,介绍了朱世杰在多元高次方程组的解法——四元术,以及高阶等差级数的计算——垛积术、招差术等方面的研究和成果。 “天元术”是设“天元为某某”,即某某为x。但当未知数不止一个的时候,除设未知数天元(x)外,还需设地元(y)、人元(z)及物元(u),再列出二元、三元甚至四元的高次联方程组,然后求解。 这在欧洲,解联立一次方程开始于16世纪,关于多元高次联立方程的研究还是18至19世纪的事了。朱世杰的另一重大贡献是对于“垛积术”的研究。 他对于一系列新的垛形的级数求和问题作了研究,从中归纳为“三角垛”的公式,实际上得到了这一类任意高阶等差级数求和问题的系统、普遍的解法。 朱世杰还把三角垛公式引用到“招差术”中,指出招差公式中的系数恰好依次是各三角垛的积,这样就得到了包含有四次差的招差公式。 参考资料来源百度百科——朱世杰
朱世杰写了什么书
他的主要著作有《算学启蒙》三卷和《四元玉鉴》三卷。),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法)。 中国元代数学家,对多元高次方程组解法、高阶等差级数求和,高次内插法都有深入研究,他著有《算学启蒙》(1299年)、《四元玉鉴》(1303年)各3卷,在后者中讨论了多达四元的高次联立方程组解法。
元代朱世杰有什么名著
朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。有“中世纪世界最伟大的数学家”之誉。朱世杰在当时天元术的基础上发展出“四元术”,也就是列出四元高次多项式方程,以及消元求解的方法。他还创造出“垛积法”,即高阶等差数列的求和方法,与“招差术”,即高次内插法。主要著作是《算学启蒙》与《四元玉鉴》。
四元玉鉴是什么时代朱世杰的著作?
四元玉鉴是元代数学家朱世杰所著,于1303年刊行。日本三上义夫曾将本书介绍到国外,其后康南兹也做过英文介绍,比利时赫师慎(L. Van Hee)曾将假令四草(本书的一部分)译成法文。陈在新曾将本书译成英文。 重要内容是多元高次方程组和高阶等差级数,在三个方面创立或发展了数学理论,即“四元术”、“垛积术”和“招差术”。 扩展资料 《四元玉鉴》的主要成就是四元术,即四元高次方程组的建立和求解方法。其用“天”、“地”、人”、“物”四字代表四个未知数,系统地介绍了二元、三元、四元高次方程组的布列和解法。解法的关键是消元,将多元高次方程组化成一元高次方程,然后应用增成开方法来解。 《四元玉鉴》中的另一杰出成就是垛积招差术。垛积即高阶等差数列求和,招差即高次内插法,在这两个方面取得了相当重要的结果,比西方同类工作要早400年以上。 参考资料来源百度百科——四元玉鉴
四元玉鉴是哪个朝代的著作?
元代 《四元玉鉴》是中国元代数学重要著作之一,数学家朱世杰所著。《四元玉鉴》分卷首、上卷、中卷、下卷,24门,收录288问,包括天元术232问,二元术36问,三元术13问,四元术7问。 《四元玉鉴》是元代杰出数学家朱世杰的代表作,它是一部成就辉煌的数学名著,受到近代数学史研究者的高度评价,认为是中国数学著作中最重要的一部,也是中世纪最杰出的数学著作之一。 《四元玉鉴》全书共分3卷,24门,288问,书中所有问题都与求解方程或求解方程组有关,其中四元的问题(需设立四个未知数者)有7问,三元者13问,二元者36问,一元者232问。卷首列出了贾宪三角等四种五幅图,给出了天元术、二元术、三元术、四元术的解法范例。
好了,本文到此结束,希望对大家有所帮助。