天元术是哪个数学家发明的,四元术的发展过程是什么?
今天给各位分享天元术是哪个数学家发明的的知识,其中也会对天元术是哪个数学家发明的进行解释,如果能碰巧解决你现在面临的问题,别忘了关注皮肤病网,现在开始吧!
天元术的渊源
天元术的思想渊源于道、名、墨三家。作为天元术发展高峰的四元术,朱世杰的《四元玉鉴》天地人与物并列的“四象会元”方法极有可能也受到道教思想的影响。天元术是一种半符号式的代数,“以不同的文字表示不同的未知数意味着开始向符号代数的转化,这包括了对数的抽象、对文字的抽象、对运算的抽象思维过程,表现了中国数学家高度的抽象思维能力。”王鸿钧、孙宏安《中国古代数学思想方法》,江苏教育出版社,1988,第143页。是近代符号代数的雏形。天元术的出现和完善是中国古代数学思想发展的重要环节,而这一重要数学思想的源头活水乃是道教思想。天元术是一种用数学文字符号列方程的方法。“立天元一”是其主要数学思想方法,这与今之代数学“设Ⅹ为某某”是等价的。中国古代数学列方程的数学思想可以远溯到汉代《九章算术》,书中就用文字叙述的方法建立了二次方程,但尚缺乏明确的未知数概念。唐代王孝通以高度的数学技巧成功地列出了三次方程,但还无法掌握列方程的一般方法,仍然需要借助语言文字来表述。郭金彬先生对中国传统计算思想的演变进行了研究,认为“到了宋代,高次方程的发展使方程的造法越来越困难。,不找出某种普遍的列方程的方法是不行的。因为,众所周知,要运用方程求解实际问题,要根据问题所提供的条件列出方程,然后解方程求根,获得答案。‘天元术’就是在这种情况下产生出来的具有中国独特风格的一种普遍的列方程的方法”郭金彬《中国传统科学思想史论》,知识出版社,1993,第43页。郭金彬先生所说的“中国独特风格”,笔者以为其主要就体现在道门中人洞渊所首创的“天元”概念及“立天元一”天元术思想方法。金代道教数学家所传的天元术对南宋数学思想的发展可能也产生过积极影响。钱宝琮先生在论及“金元之际数学之传授”这一问题时,指出南宋数学以秦九韶《数书九章》(公元1247年)为最有价值。九韶为四川人,转至东南,寓居湖州。《数书九章》自序云“早岁侍亲中都,因得访习于太史。又尝从隐君子受数学”。其大衍求一术之“立天元一”,疑得自金人,非南宋另有天元术也。《钱宝琮科学史论文选集》,科学出版社,1983,第321页。
天元术是谁发明的
李冶和朱世杰发明的。 1248年,金代数学家李冶在其著作《测圆海镜》、《益古演段》,以及元代数学家朱世杰的《算学启蒙下卷》《四元玉鉴》,都系统地介绍了用天元术建立二次方程。 更多有关专业知识产权代理机构知识或者更多服务,请登录www.shewentm.com或者致电010-82685045
四元玉鉴是哪个朝代的
《四元玉鉴》是中国元代数学重要著作之一,元代数学家朱世杰所著。 《四元玉鉴》分卷首、上卷、中卷、下卷,24门,收录288问,包括天元术232问,二元术36问,三元术13问,四元术7问。卷首四问是例题,有草(解题步骤),其他284问只有术而没有草。1837年,清代数学家罗士琳补草,刊行《四元玉鉴细草》三卷。所有问题都与方程式或方程组有关。 介绍了朱世杰在多元高次方程组的解法─”四元术”、高阶等差级数的计算─”垛积术”以及”招差术”(有限差分)等方面的研究成果。 作者简介 朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。朱世杰在当时天元术的基础上发展出“四元术”。 也就是列出四元高次多项式方程,以及消元求解的方法。他还创造出“垛积法”,即高阶等差数列的求和方法,与“招差术”,即高次内插法。主要著作是《算学启蒙》与《四元玉鉴》。 朱世杰“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。 《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法)。 宋元时期,中国数学鼎盛时期中杰出的数学家有“秦﹝九韶﹞、李﹝冶﹞、杨﹝辉﹞、朱﹝世杰﹞四大家”,朱世杰就是其中之一。朱世杰是一位平民数学家和数学教育家。朱世杰平生勤力研习《九章算术》,旁通其它各种算法,成为元代著名数学家。
朱世杰是什么朝代,什么地方的人,代表著作和数学创造
朱世杰是元代燕山(今北京)人,代表著作《算学启蒙》与《四元玉鉴》,数学成就为四元消法。 一、朱世杰 朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。有“中世纪世界最伟大的数学家”之誉。 二、代表著作 1、《算学启蒙》 本书的正文分3卷,20门,259问。卷上8门,113问,包括各种乘除捷算法和歌诀的应用题,以及各种比例算法。许多问题反映了元代的社会经济情况。 卷中7门,71问,是面积、体积及各种算术问题。卷下5门,75问,是关于分数运算、垛积(即高阶等差级数求和)、盈不足术、线性方程组解法、天元术及增乘开方法等问题。还处理了开方过程中系数变号的问题。 2、《四元玉鉴》 《四元玉鉴》分卷首、上卷、中卷、下卷,24门,收录288问,包括天元术232问,二元术36问,三元术13问,四元术7问。卷首四问是例题,有草(解题步骤),其他284问只有术而没有草。 1837年,清代数学家罗士琳补草,刊行《四元玉鉴细草》三卷。所有问题都与方程式或方程组有关。 介绍了朱世杰在多元高次方程组的解法─”四元术”、高阶等差级数的计算─”垛积术”以及”招差术”(有限差分)等方面的研究成果。 三、数学创造 朱世杰的主要贡献是创造了一套完整的消未知数方法,称为四元消法.这种方法在世界上长期处于领先地位,直到18世纪,法国数学家贝祖(Bezout)提出一般的高次方程组解法,才超过朱世杰。 除了四元术以外,《四元玉鉴》中还有两项重要成就,即创立了一般的高阶等差级数求和公式及等间距四次内插法公式,后者通常称为招差术。 扩展资料 朱世杰在数学科学上,全面地继承了秦九韶、李冶、杨辉的数学成就,并给予创造性的发展,写出了《算学启蒙》、《四元玉鉴》等著名作品,把我国古代数学推向更高的境界,形成宋元时期中国数学的最高峰。 《算学启蒙》是朱世杰在元成宗大德三年(1299)刊印的,它的体系完整,内容深入浅出,通俗易懂,是一部很著名的启蒙读物。这部著作后来流传到朝鲜、日本等国,出版过翻刻本和注释本,产生过一定的影响。 而《四元玉鉴》更是一部成就辉煌的数学名著。它受到近代数学史研究者的高度评价,认为是中国古代数学科学著作中最重要的、最有贡献的一部数学名著。 《四元玉鉴》成书于大德七年(1303),共三卷,24门,288问,介绍了朱世杰在多元高次方程组的解法——四元术,以及高阶等差级数的计算——垛积术、招差术等方面的研究和成果。 “天元术”是设“天元为某某”,即某某为x。但当未知数不止一个的时候,除设未知数天元(x)外,还需设地元(y)、人元(z)及物元(u),再列出二元、三元甚至四元的高次联方程组,然后求解。 这在欧洲,解联立一次方程开始于16世纪,关于多元高次联立方程的研究还是18至19世纪的事了。朱世杰的另一重大贡献是对于“垛积术”的研究。 他对于一系列新的垛形的级数求和问题作了研究,从中归纳为“三角垛”的公式,实际上得到了这一类任意高阶等差级数求和问题的系统、普遍的解法。 朱世杰还把三角垛公式引用到“招差术”中,指出招差公式中的系数恰好依次是各三角垛的积,这样就得到了包含有四次差的招差公式。 参考资料来源百度百科——朱世杰
《四元玉鉴》记录的“四元术”是什么?
元代数学家朱世杰,在与他代的数学家秦九韶、李治所创立的一元高次方程的数值解法和天元术的基础上,进一步发展了“四元术”,创造了用消元法解二、三、四元高次方程组的方法。 朱世杰这—重大发明,都记录在他的杰作《四元玉鉴》一书中。 所谓四元术,就是用天元(x)、地元(y)、人元(z)、物元(u)等四元表示四元高次方程组。朱世杰不仅提出了多元(最高到四元)高次联立方程组的算筹摆置记述方法,而且把《九章算术》等书中四元一次联立方程解法推广到四元高次联立方程组。四元术用四元消法解题,把四元四式消去一元变成三元三式,再消去一元变成二元二式,再消去一元,就得到一个只含一元的天元开方式,然后用增乘开方法求正根。这和现代解方程组的方法基本一致。
好了,本文到此结束,希望对大家有所帮助。