以太是什么东西?以太网是什么意思?
今天给各位分享以太是什么东西的知识,其中也会对以太是什么东西进行解释,如果能碰巧解决你现在面临的问题,别忘了关注皮肤病网,现在开始吧!
关于以太的解释
以太(Ether)(或译乙太;英语ether或aether) 以太是古希腊哲学家所设想的一种物质,是一种被假想的电磁波的传播媒质,被认为无所不在。 在古希腊,以太指的是青天或上层大气。在宇宙学中,有时又用以太来表示占据天体空间的物质。17世纪的笛卡儿是一个对科学思想的发展有重大影响的哲学家,他最先将以太引入科学,并赋予它某种力学性质。 在笛卡儿看来,物体之间的所有作用力都必须通过某种中间媒介物质来传递,不存在任何超距作用。,空间不可能是空无所有的,它被以太这种媒介物质所充满。以太虽然不能为人的感官所感觉,但却能传递力的作用,如磁力和月球对潮汐的作用力。 后来,以太又在很大程度上作为光波的荷载物同光的波动学说相联系。光的波动说是由胡克提出的,并为惠更斯所进一步发展。在相当长的时期内(直到20世纪初),人们对波的理解只局限于某种媒介物质的力学振动。这种媒介物质就称为波的荷载物,如空气就是声波的荷载物。 由于光可以在真空中传播,惠更斯提出,荷载光波的媒介物质(以太)应该充满包括真空在内的全部空间,并能渗透到通常的物质之中。除了作为光波的荷载物以外,惠更斯也用以太来说明引力的现象。 牛顿虽然不同意胡克的光波动学说,但他也像笛卡儿一样反对超距作用,并承认以太的存在。在他看来,以太不一定是单一的物质,因而能传递各种作用,如产生电、磁和引力等不同的现象。牛顿也认为以太可以传播振动,但以太的振动不是光,因为当时光的波动学说还不能解释光的偏振现象,也不能解释光为什么会直线传播。 18世纪是以太论没落的时期。由于法国笛卡儿主义者拒绝引力的平方反比定律,而使牛顿的追随者起来反对笛卡儿哲学体系,因而连同他倡导的以太论也一同进入了反对之列。 随着引力的平方反比定律在天体力学方面的成功,以及探寻以太得试验并未获得实际结果,使得超距作用观点得以流行。光的波动说也被放弃了,微粒说得到广泛的承认。到18世纪后期,证实了电荷之间(以及磁极之间)的作用力同样是与距离平方成反比。于是电磁以太的概念亦被抛弃,超距作用的观点在电学中也占了主导地位。 19世纪,以太论获得复兴和发展,这还是从光学开始的,主要是托马斯·杨和菲涅耳工作的结果。杨用光波的干涉解释了牛顿环,并在实验的启示下,于1817年提出光波为横波的新观点,解决了波动说长期不能解释光的偏振现象的困难。科学家们逐步发现光是一种波,而生活中的波大多需要传播介质(如声波的传递需要借助于空气,水波的传播借助于水等)。受传统力学思想影响,于是他们便假想宇宙到处都存在着一种称之为以太的物质,而正是这种物质在光的传播中起到了介质的作用。 以太的假设事实上代表了传统的观点电磁波的传播需要一个“绝对静止”的参照系,当参照系改变,光速也改变。 根据麦克斯韦方程组,电磁波的传播不需要一个“绝对静止”的参照系,因为该方程里两个参数都是无方向的标量,所以在任何参照系里光速都是不变的。
关于以太有什么不同的说法?
“以太”这个词,是古希腊人的创造。他们认为空气中充满着以太这种物质,它是肉眼看不见的,但无处不在。 牛顿借用以太一词,把它作为万有引力的传播媒介。但光的“波动说”却认为以太是光波的传播媒介,就像空气是声波的媒介一样。“波动说”还认为,以太无所不在,不但充满宇宙空间,而且渗透于气体、水和一切物体之中。它没有一点摩擦阻力,不影响一切物体的运动。19世纪末,以太又被人们说成是电磁场的承担者和电磁波的传播者。还有人干脆把这样看不见摸不着、说不清道不明的以太,说成是牛顿的绝对空间!
以太网是什么意思?
以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMACD)方法,采用竞争机制和总线拓朴结构。基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。在星型或总线型配置结构中,集线器交换机网桥通过电缆使得计算机、打印机和工作站彼此之间相互连接。 以太网具有的一般特征概述如下 共享媒体所有网络设备依次使用同一通信媒体。 广播域需要传输的帧被发送到所有节点,但只有寻址到的节点才会接收到帧。 CSMACD以太网中利用载波监听多路访问冲突检测方法(Carrier Sense Multiple AccessCollision Detection)以防止 twp 或更多节点发送。 MAC 地址媒体访问控制层的所有 Ethernet 网络接口卡(NIC)都采用48位网络地址。这种地址全球唯一。 Ethernet 基本网络组成 共享媒体和电缆10BaseT(双绞线),10Base-2(同轴细缆),10Base-5(同轴粗缆)。 转发器或集线器集线器或转发器是用来接收网络设备上的大量以太网连接的一类设备。通过某个连接的接收双方获得的数据被重新使用并发送到传输双方中所有连接设备上,以获得传输型设备。 网桥网桥属于第二层设备,负责将网络划分为独立的冲突域获分段,达到能在同一个域分段中维持广播及共享的目标。网桥中包括一份涵盖所有分段和转发帧的表格,以确保分段内及其周围的通信行为正常进行。 交换机交换机,与网桥相同,也属于第二层设备,且是一种多端口设备。交换机所支持的功能类似于网桥,但它比网桥更具有的优势是,它可以临时将任意两个端口连接在一起。交换机包括一个交换矩阵,通过它可以迅速连接端口或解除端口连接。与集线器不同,交换机只转发从一个端口到其它连接目标节点且不包含广播的端口的帧。 以太网协议IEEE 802.3标准中提供了以太帧结构。当前以太网支持光纤和双绞线媒体支持下的四种传输速率 10 Mbps – 10Base-T Ethernet(802.3) 100 Mbps – Fast Ethernet(802.3u) 1000 Mbps – Gigabit Ethernet(802.3z)) 10 Gigabit Ethernet – IEEE 802.3ae 以太网简史 1972年,罗伯特梅特卡夫(Robert Metcalfe)和施乐公司帕洛阿尔托研究中心(Xerox PARC)的同事们研制出了世界上第一套实验型的以太网系统,用来实现Xerox Alto(一种具有图形用户界面的个人工作站)之间的互连,这种实验型的以太网用于Alto工作站、服务器以及激光打印机之间的互连,其数据传输率达到了2.94Mbps。 梅特卡夫发明的这套实验型的网络当时被称为Alto Aloha网。1973年,梅特卡夫将其命名为以太网,并指出这一系统除了支持Alto工作站外,还可以支持任何类型的计算机,而且整个网络结构已经超越了Aloha系统。他选择“以太”(ether)这一名词作为描述这一网络的特征物理介质(比如电缆)将比特流传输到各个站点,就像古老的“以太理论”(luminiferous ether)所阐述的那样,古代的“以太理论”认为“以太”通过电磁波充满了整个空间。就这样,以太网诞生了。 最初的以太网事一种实验型的同轴电缆网,冲突检测采用CSMACD 。该网络的成功,引起了大家的关注。1980年,三家公司(数字设备公司、Intel公司、施乐公司)联合研发了10M以太网1.0规范。最初的IEEE802.3即基于该规范,并且与该规范非常相似。802.3工作组于1983年通过了草案,并于1985年出版了官方标准ANSIIEEE Std 802.3-1985。从此以后,随着技术的发展,该标准进行了大量的补充与更新,以支持更多的传输介质和更高的传输速率等。 1979年,梅特卡夫成立了3Com公司,并生产出第一个可用的网络设备以太网卡(NIC), 它是允许从主机到IBM终端和PC机等不同设备相互之间实现无缝通信的第一款产品,使企业能够以无缝方式共享和打印文件,从而增强工作效率,提高企业范围的通信能力。 以太网和IEEE802.3 以太网是Xerox公司发明的基带LAN标准。它采用带冲突检测的载波监听多路访问协议(CSMA/CD),速率为10Mbps,传输介质为同轴电缆。以太网是在20世纪70年代为解决网络中零散的和偶然的堵塞而开发的,而IEEE802.3标准是在最初的以太网技术基础上于1980年开发成功的。现在,以太网一词泛指所有采用CSMA/CD协议的局域网。以太网2.0版由数字设备公司、Intel公司和Xerox公司联合开发,它与IEEE802.3兼容。 以太网和IEEE802.3通常由接口卡(网卡)或主电路板上的电路实现。以太网电缆协议规定用收发器将电缆连到网络物理设备上。收发器执行物理层的大部分功能,其中包括冲突检测及收发器电缆将收发器连接到工作站上。 IEEE802.3提供了多种电缆规范,10Base5就是其中的一种,它与以太网最为接近。在这一规范中,连接电缆称作连接单元接口(AUI),网络连接设备称为介质访问单元(MAU)而不再是收发器。 1.以太网和IEEE802.3的工作原理 在基于广播的以太网中,所有的工作站都可以收到发送到网上的信息帧。每个工作站都要确认该信息帧是不是发送给自己的,一旦确认是发给自己的,就将它发送到高一层的协议层。 在采用CSMA/CD传输介质访问的以太网中,任何一个CSMA/CDLAN工作站在任何一时刻都可以访问网络。发送数据前,工作站要侦听网络是否堵塞,只有检测到网络空闲时,工作站才能发送数据。 在基于竞争的以太网中,只要网络空闲,任一工作站均可发送数据。当两个工作站发现网络空闲而发出数据时,就发生冲突。这时,两个传送操作都遭到破坏,工作站必须在一定时间后重发,何时重发由延时算法决定。 2.以太网和IEEE802.3服务的差别 尽管以太网与IEEE802.3标准有很多相似之处,但也存在一定的差别。以太网提供的服务对应于OSI参考模型的第一层和第二层,而IEEE802.3提供的服务对应于OSI参考模型的第一层和第二层的信道访问部分(即第二层的一部分)。IEEE802.3没有定义逻辑链路控制协议,但定义了几个不同物理层,而以太网只定义了一个。 IEEE802.3的每个物理层协议都可以从三方面说明其特征,这三方面分别是LAN的速度、信号传输方式和物理介质类型。http:www.yestar2000.comA2005082005-08-02183118.html 引自
以太网是什么意思?
以太网(Ethernet)是一种计算机局域网技术。IEEE组织的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问层协议的内容。以太网是目前应用最普遍的局域网技术,取代了其他局域网标准如令牌环、FDDI和ARCNET。 以太网实现了网络上无线电系统多个节点发送信息的想法,每个节点必须获取电缆或者信道的才能传送信息,有时也叫作以太(Ether)。 (这个名字来源于19世纪的物理学家假设的电磁辐射媒体-光以太。后来的研究证明光以太不存在。) 每一个节点有全球唯一的48位地址也就是制造商分配给网卡的MAC地址,以保证以太网上所有节点能互相鉴别。由于以太网十分普遍,许多制造商把以太网卡直接集成进计算机主板。 以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了减少冲突,将能提高的网络速度和使用效率最大化,使用交换机(Switch hub)来进行网络连接和组织。 如此一来,以太网的拓扑结构就成了星型;但在逻辑上,以太网仍然使用总线型拓扑和CSMACD(Carrier Sense Multiple AccessCollision Detection,即载波多重访问碰撞侦测)的总线技术。 扩展资料历史 以太网技术起源于施乐帕洛阿尔托研究中心的先锋技术项目。人们通常认为以太网发明于1973年,当年鲍勃.梅特卡夫(Bob Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。梅特卡夫本人认为以太网是之后几年才出现的。 在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网区域计算机网络的分布式数据包交换技术》的文章。 梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。Saltzer在一篇与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。 受到此结论的影响,很多计算机厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。这种情况也导致了另一种说法“以太网不适合在理论中研究,只适合在实际中应用”。 也许只是句玩笑话,但这说明了这样一个技术观点通常情况下,网络中实际的数据流特性与人们在局域网普及之前的估计不同,而正是因为以太网简单的结构才使局域网得以普及。 梅特卡夫和Saltzer曾经在麻省理工学院MAC项目(Project MAC)的同一层楼工作,当时他正在做自己的哈佛大学毕业论文,在此期间奠定了以太网技术的理论基础。 1979年,梅特卡夫为了开发个人计算机和局域网离开了施乐(Xerox),成立了3Com公司。3Com对DEC、英特尔和施乐进行游说,希望与他们一起将以太网标准化、规范化。 这个通用的以太网标准于1980年9月30日提出。当时业界有两个流行的非公用网络标准令牌环网和ARCNET,在以太网浪潮的冲击下他们很快萎缩并被取代。而在此过程中,3Com也成了一个国际化的大公司。 参考资料来源百度百科--以太网
什么是以太网?为什么要叫做“以太”网?
以太网是什么东西呢?一起来了解一下吧
好了,本文到此结束,希望对大家有所帮助。